

Carbon Sequestration in Agricultural Soils: Separating the muck from the magic

Eric Craswell, Helen King, Zoe Read

Fenner School of Environment and Society, Australian National University, Canberra

- Introduction
- Selected soil management systems
 - Potential global carbon sequestration
 - Problems
 - Lack of good data measurement uncertainties
 - Ancillary GHG impacts
- Role for isotope studies

- Selman Waksman classic 1937 book
- Soil Association
- Nutrient mining \rightarrow SOM decline \rightarrow 55-90 Pg CO₂ + CH₄ \rightarrow Atmosphere
- Now Soil Organic Matters

Areal extent/potential

Management system	Current area	Pot'larea	lssues
	10 ⁶ ha	increase	
	(%∑Ag area)	10 ⁶ ha	
Agroforestry	1023 (21%)	630	Above ground C个
Conservation tillage	100 (2%)	1252	N ₂ 0↑
Holistic rangeland management	?	?	CH₄个
Permanent pasture	3356 (69%)	From crop land?	CH₄个
Organic farming	30 (0.6%)	0?	N ₂ 0↓
Biochar	???		Economics ?
System rice	2? (0.02%)	4?	N ₂ 0个?
intensification			CH ₄ 个?

- Organic farming
 - -0.5 to 1.2 t C ha⁻¹ year⁻¹ cf. conventional
- System for rice intensification
 116 kg C ha⁻¹ year⁻¹
- Biochar

Depends on feedstock availability/cost

Agroforestry

Soil carbon density to 30cm (t/ha⁻¹)

Conservation tillage

Literature: Sequestration 0.1 – 1.3 t C ha⁻¹

Figure 2. Soil organic carbon profiles under different tillage and stubble management and pasture after 3 years, Cowra, New South Wales (Chan and Mead 1988). \bigcirc , conventional-tilled-stubble-retained; \blacktriangle , direct-drilled-stubble-retained; \blacksquare , permanent pasture. Horizontal bars indicate l.s.d. (P = 0.05).

Source: Chan et al., 2003

Regenerative grazing

Kachana Station, Kimberley region of WA

Regenerative grazing – anecdotal evidence

November November 1992 1997 End of dry End of dry season season 1 mth after 3rd graze November July 1999 1998 Mid dry End of dry season 2nd graze season 3 mths after 3rd graze

1992: <1 stock day/ha/yr =>>> 1999: 800-1100 stock day/ha/yr

Methane reduction

Low emission meat

First pass estimates of carbon sequestration potential for the Maranoa district (1.9 million ha)

	tonnes CO ₂ e savings	
Enteric methane savings (25% livestock reduction)	54,347t/yr	
Soil sequestration and rangeland rehabilitation (10% of potential) CSIRO	133,992/yr	
Total average/yr	188,139/yr	
Total 30 yrs	5,650,170/30yrs	

tonnes CO₂e savings

Source: Wilson unpublished data

Grazing and soil carbon is complex – often conflicting results

On average, management changes increased soil carbon (Conant *et al* 2001)

- Grazing management, cessation of overgrazing
- Conversion to pasture (from native veg* or agriculture)
- Fertilisation
- Improved grass species
- Irrigation

* Only for well managed pastures and may be net loss from above ground biomass

Source: Chan et al ., 2010

Fig. 3. Soil carbon concentration with depth under unimproved pastures (keys followed by 'a') and improved pasture (keys followed by 'b') treatments at 4 locations in central NSW.

otational grazing effects (

Carbon % and $\delta 13C$

Australian National University

otational grazing effects N

Nitrogen and δ15N

Australian National University

Conventional soil carbon studies:

- High variability so longer time frame needed
- Dearth of long term studies
- Bulk density a key parameter
- Landscape dimension not considered
 + lack of awareness and rigour

Unreliable published data

- Fluxes of C inputs in soil pools
 - NAM C3 vs C4 plant residues
 - ¹⁴C pulse and continuous labelling
 - Real-time ¹³C transformations
- Residence time of C pools
 - Labile fraction 'Holy grail'
- C interactions with N
 - Role of BNF ¹⁵N abundance
 - Tracing organic and inorganic N inputs
 - Profile studies of ¹³C and ¹⁵N

- Opportunity knocks
 - Driven by need for more reliable data
 - Define questions
 - Rate of soil C change
 - Residence time of added C in soil
 - Focus on important land management systems Rangelands, pastures, agroforestry & conservation tillage
 - Utilise latest advances in isotope methodology
- Coordinated international efforts needed